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ABSTRACT 

The energy dependence of the Deck-type model is discussed and shown to be 

in good agreement with data on the low mass nucleon diffractive dissociation. 

On the basis of finite mass sum rules relations between triple Regge couplings 

and different Regge contributions to elastic and Deck amplitudes are obtained 

and duality for Reggeon-nucleon scattering amplitudes is examined. The 

normal two-component duality usually assumed for nondiffractive terms is 

found to be in contradiction with experimental data. 
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I. INTRODUCTION 

Recent measurements of the low mass nucleon diffractive dissociation 

1 
display the following picture. The most prominent feature of the missing- 

mass spectrum at small jt ( is a broad enhancement with maximum at M - 1.4 x 

GeV. The main contribution to this bump comes from one-pion production 

channel. On the top of the bump some narrow resonance peaks are super- 

imposed. The integral contribution of these resonance peaks in the low-mass 

region ( Mx2 5 3 GeV) is much smaller than the contribution of the bump. This 

is clearly seen in Fig. 1 showing recent ISR results for reaction pp -. rr+np. 
2 

The cross section in the bump region has very steep t-dependence and dies 

away quickly as .I t \ grows. As a result at ,(t [ > 0.2 GeV2 the resonance con- 

tributions become comparable with bump contribution. 

In our previous paper3 we discussed the relevance of the peripheral 

Drell-Hiida-Deck (DHD)-type model4 to the nucleon excitation in the region of 

1.4 GeV bump. Taking into account absorptive corrections this model was 

shown to give a reasonable explanation for the main properties of the low 

mass diffractive dissociation. 

In the present paper we shall use this model to obtain some information 

on high mass nucleon dissociation. One of the possible ways to do so is to 

assume that the DHD-type diagram retains its importance at high Mx. Then 

the sum of these diagrams will lead to a pion-triangle model for triple Regge 

couplings (Fig. 2). However it is hard to believe that DHD-type contributions 

would be only important at high Mx. Many other contributions may enter the 

play so we do not expect qualitatively correct results in this approach. The 
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other way is to use DHD model only in the region where it is known to be 

important, i. e., at low M x, and connect it with high-mass region by finite 

mass sum rules (FMSR). 5 The reason for using the model for low mass 

inelastic scattering rather than the experimental data itself is the following. 

In order to obtain information on different triple Regge couplings we need to 

know the contributions of the corresponding Regge exchanges into the low 

mass inelastic scattering and DHD model predicts it in terms of the pre- 

sumably known Regge contributions to rrN-scattering amplitude. If we want 

to extract such information directly from the data on inelastic scattering, we 

need anyhow some model. Moreover it gives predictions even at such values 

of t where experimental data are still not available, in particular at t + O6 

which is important for understanding of the small-t behavior of triple Regge 

couplings. In what follows we shall assume: 

(i) Semilocal duality. It means that the FMSR should be valid for 

low cutoff which we choose at Mx2 = 3 GeV2. 

(ii) The whole 1.4 GeV bump will be described by DHD-type model for 

one-pion production. Two-pion channel can also be easiIy accommodated in 

our scheme by Ali-production. Estimation for An gives, however, relatively 

small (s 15%) contribution which we shall neglect. 

(iii) Guided by experimental data2 we shall also neglect resonance 

contributions into sum rule integrals. 

The last two approximations are reasonable only at small 1 t ! where 

1.4 GeV bump dominates inelastic cross section. So in what follows we shaI1 
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restrict our consideration to a small It [ region It ( 5 0.1 GeV2. Then the 

only terms which contribute to the low-mass integral are the elastic term 

(which is equivalent to resonance contribution into ordinary FESR) and the 

DHD-contribution (equivalent of nonresonant background). 

In Section II we generalize our previous result for DHD cross section and 

take into account in a very simple way nondiffractive parts of the DHD 

amplitude connected with contributions of secondary trajectories into elastic 

nN scattering. Predicted energy dependence of the 1.4 GeV bump is shown to be 

in good agreement with experimental data. Then in Section III we obtain 

equations connecting diffractive and nondiffractive contributions into low- 

and high-mass regions of the form: 

i=j=P 
<E(i, j)> + <D(i, j)> = i(i, j, P) + (i, j,R)> i=P, j=R (1) i=j=R 

shown graphically in Fig. 3. Here < E( i, j)> and < D( i, j)> are integrals over 

Mx of elastic and DHD terms, corresponding to exchange of ai and aj, while 

(i, j, k) corresponds to triple Regge coupling Gi j k. P is the Pomeron and I 2 

R is secondary trajectory. These equations can be useful in reducing of the 

6 unknown triple Regge terms to only 3. Further information could be 

obtained if one can separate somehow (i, j, P) and (i, j, R) terms in Eq. (1). 

For usual two-body hadronic reactions such separation based on Harari-Freund 

two-component duality7 is known to work very nicely. It connects the 

resonance contributions to the FESR with ordinary Regge trajectories, while 

background with Pomeron. However this “normal” two-component duality 

cannot be generalized to multibody amplitudes in a straightforward model 



independent way. 
8 

It is commonly believed that for non-Pomeron exchanges, 

i. e., for amplitudes R + h (hadron) + h + R and R + h * P + h normal two- 

component duality works. 9 For Pomeron-particle amplitudes some argu- 

ments were given in favor of “abnormal” duality where resonances in the 

direct channel build up the Pomeron in the cross channel. 9 Here we shall 

use the name “abnormal” for the extreme case when the whole resonance 

contribution is connected with P whereas nonresonant part builds up R. We 

shall distinguish it from the weaker form which we call “mixed” duality. In 

this case resonance and background contribute partly to P and R. It is worth 

to note that the secondary vacuum trajectory f” can also share with Pomeron 

its “abnormal” properties. *’ IJ~ 

In Section N these extreme types of duality are examined. Triple 

Regge couplings obtained from separated equations [ Eq. (1) 1 are compared with 

experimental data on proton diffractive dissociation. 

II. ENERGY DEPENDENCE OF THE LOW MISSING MASS CROSS SECTION 

According to our assumptions we shall describe the inclusive cross 

section for reaction pp .+ Xp in the region of the 1.4 GeV bump by DHD-type 

diagrams of Fig. 4. It has been shown in Ref. 3 that at small 1 t 1 the 

absorptive corrections can be effectively taken into account by phenomeno- 

logical form factors. Then the inclusive cross section can be expressed in 

terms of TN elastic scattering amplitude TTIN in a form similar to the 

traditional DHD model: 

2ll 2 
d cos e 

J 
d,$ @(ss,t,$,e, “;)‘ITlrN(t, sl)! .(2) 

0 
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Here ~3 and 4 are polar and azimuthal angles of the incoming nucleon three- 

momentum in the c. m. of the produced v + N system and Q contains kine- 

matical factors, form factors, and the v-meson propagator. In the high- 

energy limit, considered in Ref. 3, we took into account only diffractive 

(Pomeron) contributions and the TEN scattering amplitude was approximated by 

energy independent form TTIN = i CT tot (ITN) ebTNt. If subenergy s1 of the RN 

scattering is small, secondary trajectories are also important, and we have: 

T(rr*p+x*p)=P+fip (3) 

T(rr’p-+rr’p) =P+f, (4) 

where 

p = Pp(U Xp(V s1 
cup(t)-1 

f = P,(t) Xf(U s1 
cuf(W 

P = PpW xp s1 
a$ t) -1. 

(5) 

ai and P,(t) are trajectories and residues of Regge poles and Xi(t) is a 

signature factor 

Xi(t) = 
1 + Tie ’ 

-sinarr. ’ 1 

In what follows we choose ap(t) = cu,(t) = eU(t) = i/2 + CRY. The p contribution 

+ - 
which is responsible for the difference between pi -, T -, and no-N scattering 

is known to be relatively small. It can be estimated from the data on a*p 

total cross sections: I* 
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u* 
=Im(P+f*P)t=o = 21.3 + (20.35 5- 4.55) s1 

-l/2 
. (6) 

TP 

Neglecting the p contribution we have T -F = T 
“OP 

and together with relations 

(2)-(5) and G2 = 2 G2 
T’P 

-F it gives 
r w “OPP 

= 3 (7) 

PP - XP 
near 1.4 GeV 

where 

+1 zrr 

/ 
d cos @ 

/ 
d$ @(s,t,8,,$,Mx2)e 

blTNt 
u&N’ 

-1 0 

+ 2 “Pp(t)FR(t)Re [X;(t)Xf(t)l s1 
ap(t)+@RcRo-2 

+ 

+ B;(t)lXf(t)12 s1 
2 QR( t) -2 

J 

and 

P”p = 
P,lQ -blTNt 

utot(~N) e * 

(8) 

(9) 

The subenergy s1 is connected with total energy s by the following relation: 

s1 = A(s) + B(s) cos 0 + C(s) sin I3 CDS ~4, (10) 

where A, B, and C are known functions of s and Mx. 
3 

Thus the Eqs. (8) and 

(10) determine the energy-dependence of the proton excitation cross section 
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in the region of 1.4 GeV bump. In the simple energy independent approxi- 

mation for TrN3 we were able to calculate integral (8) analytically. In the 

general case the integral can be calculated only numerically. However, we 

can avoid this complication using a simple approximation for Eq. (10). At 

the threshold Mx = MN+ p Eq. (10) reduces to 

s1 = SIX, x= ‘MN+ fL)lp -7.7 (11) 

and we shall use this simple relation in the whole low-mass interval 

Mx 5 1.7 GeV. 

One can see from Eq. (ii) that even at Fermilab energies s1 is 

relatively small leading to the importance of the nondiffractive contributions 

in the DHD cross section. 

Using Eq. (ii), Eq. (8) can be rewritten as 

( dt::;\p;j;:: ). F(s’t) 
(12) 

where 

2 ap( t) -2 a,(t) + ‘YR(t)-2 2czR(t)-2 
F(s,t) = Dpp(t) s + DpRW s + DRR(t) s (13) 

and 

DRP = (Xl 
2-olp(t)-ruR(t) 

b,(t) bR (t) Re (X$(t) X,(t)\ (14) 

DRR = (X) 
2-2WR(t) 
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Let us now compare these formulae with experimental data. We can fix the 

parameters pR and 5, from the data on HN scattering. Parametrizing 

residue functions by usual exponential expression 

b.t 
Pi(t) = Pi(O) e l 

we take for simplicity bl, = bR = b,,: and choose the value 6 GeV 
-2 0 12 

for bvN. 

From (5) and (6) p”,(o) -0.89 and pR(o)=0.85. At small It ( the function 

F( s, t) can be approximated by the following form: 

F(s,t)~0~79e(0.5ans-4)t+4~2 .-5.5t+PnS(-0.5+1.25t)+ 

+ Ii.i(l-7~t)e 
-7.it +(zt-i)ans 

(15) 

Multiplying it by the cross section (d~/dtdM:)~ from Ref. 3, one can find 

(du/dtdM; jppexp at different s values. In Fig. 5 we show the comparison 

of the calculation for t = -0.04 and Mx = 1.4 with experimental data. 
14 

The 

agreement is good a+d confirms the validity of the model. 

In the next section we shall also need the expression for pp elastic 

cross section in terms of Regge contributions. Neglecting p and A2 which 

are known to couple weakly to NE we have 

T =P+f+o. (16) 
PP 

Assuming exchange degeneracy for f and w one can write it as 

= up% s 
+)-I 2YR2(tl 

T 
PP XP(t) + sin r’cy (t) ’ 

aRct)-l 
’ R 

(17) 

where Vi(t)- is vertex function for pp i coupling. 
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(rci+~)~~ = Epp s2m~(t)-2 + EpR saP(t) + =kct)-’ + ERR s2aR(t)-2, (18) 

where 

EPP 
= & yp4ct1 Ix,(t) I2 

1 
ERR = - 

4 YR4( t) 

16~ 
sin27r aR( t) 

1 4 Yp2(U Y& 
EpR = - 1671 sin 1~ aR(t) 

Re X,(t) (49) 

are contributions of PP, RR, and the cross term. 

From the experimental data on pp and pp total cross sections one can 

find 
11 

the following values of parameters 

Y,‘(O) = 37.4 mb, yR2(o) = 30.6 mb. (20) 

We parametrize 

y’(t) = yi2(o) e 
fbi(t) 

and choose b P 
=bR =bo, 

13 
with b. = 8.3 GeVm2. 

III. SUM RULES 

2 
At large M >> M N2 and s / Mx2 > > 1, the cross section for 

x 

inclusive process a + b + c + X can be expressed in terms of triple Regge 

contributions : 
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do 
2= G.. (t) s 

cup + aj(t) -2 2 CkCO) -crp -ajw 

dtdM 1Jk 
(Mx 1 

x ijk 

(21) 

where Gijk(t) = yaci(t)Yacj(t) x’;(t) Xj(t) gijk(t)ImXk(o)Ybbk(o)~ 

and g.. (t) 
1Jk 

is the triple Regge coupling. 

In the special case of pp + Xp under consideration with a = b = c = p 

possible exchanges include P, f, w, p, A, and r Regge poles which are known 

to couple to NN. Let us look at these terms in more detail. Isospin and G- 

parity reduce the number of possible triple couplings 

(i) In the PPR and PRP only PPf and PfP are permitted. 

(ii) In RRP only ffP, WOP, rvP, ppP, A2A2P and A2rrP are possible. 

If we neglect also p and A2 weakly coupled with N??, then 

RRP = ffP, WWP, and mrP 

and PRR = Pff, fPf, Pow, OPW. 

The term P~H vanishes due to spin-parity and the condition that t = 0 at the 

k-leg in the triple Regge diagram. 

(iii) For RRR neglecting p and A 2 
we have due to isospin and G- 

selection only RRR = fff, wwf, and rrnf terms. 

Again frrir and nfrr are eliminated by spin-parity and few + wfo by exchange 

degeneracy of o and f trajectories. 

One could go further and assume degeneracy of the all triple 

couplings involving w and f trajectories; however, this strong form of the 

exchange degeneracy which leads to cancellation of all off-diagonal terms 

is wrong in general 
15 

because w PP and PwP terms which are partners of fPP 

and PfP vanish by G-parity. The other, weaker form of exchange degeneracy 
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has been suggested in Ref. 16 for only terms with k # P. Then the term 

PRR = Pff + fPf + Pww + OPO must vanish and the other w couplings can be 

expressed in terms of the f coupling 

GffP + GwwP = [YacfwlZYbbpK) gffpw 4 
sin2ncyR( t) 

2 
Gfff + Gwwf = [‘a~f(~)’ ‘bbf(‘) gfff(t) sin2r4u 

R 
(t) 

(22) 

The arguments for this “weak” form of exchange degeneracy are based 

on the assumption of the normal two-component duality for nondiffractive 

terms of Eq. (21). However, as we shall see in the next section, application 

of our model to pp -f Xp rules out the normal duality for nondiffractive terms. 

Thus we are left with all 6 unknown functions G. 
uk 

entering the expression 

(21) plus two ~--meson terms which we shall consider separately. 

The high and low Mx behavior of inclusive cross section can be con- 

netted by finite mass sum rules. 
5 

,? [zlab - cX) + ( -l)n+‘d$z(cb - aXl] = 
..- ._.~~. 

-. . 
[dtdti‘ 

p + czj(U - z Cuk(Ul+n+l -ai -aj(t) 

“0 
GijkM ak(o) + n,+ 1 - cYi(t) - clj(t) (23) 

” 2 
where v = M - M 

2 
N 

-t. 
x 

We shall use the first moment (n =1) sum rules and saturate the low- 

energy integral with elastic and DHD-contributions, considered in the pre- 

vious section. Then, in accordance with their s-dependence, the contributions 

into low- and high-mass parts of the sum rules can be separated into three 

relations, shown graphically in Fig. 3 : 
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a,(O) + 2 - 2aP(t) cyR(0) + 2 -2cup(t) 

yO “0 
<E 

PP 
> t iDPp > =G 

PPP ep(0) + 2 - 2Qp(t) 
+G 

PPR crR(0)+ 2 -2cup(t) 

cup(o)+2 -cup(t) -LYR(t) CUR(o)+ 2 -a,@) -a,(t) 

“0 “0 ---- 
‘RPR 

> t <D 
PR 

> =G 
PRP up(O) + 2 - mp(t) - aR(t) 

tG 
PRR oR( 0,) + 2 - czp( t) - OlR’t) 

ap(o)t 2 - 2arR(t) aR(o)+ 2 - 2aR(t) 

“0 “0 
<E > t CD 

> = ‘RRP cup(O)+ 2 - 2aR(t) 
+G (24) 

RR RR RRR aR(0)+2 -2cR(t) ’ 

In principal one can write down the sum rules also for n-meson contributions 

but the closeness of the pion pole to the physical region permits us to estimate 
17 

its contribution directly in terms of rrN total cross section: 

2 

G ,(t) = 1 g,rNp 

bn(t -w2) 

Tlln 4ll 471 uto; (TP) ( -;:e- W2)2 ) 

where i =P and R and ototp 
R 

and Otot 
are diffractive and nondiffractive con- 

tributions into total TTN cross section ( 6) and exp [ br(t - p2)] is an off-shell 

form-factor. 

The contributions of the elastic and the DHD amplitudes into low mass 

integral can be obtained using the result of Section III: 

and 

where 

(25) 

(26) 

(27) 

(28) 

Using the results of Ref. 3 this last integral was calculated. At small 

1 t \ it can be approximated as Q(t) = 9 e 
5.3t Thus expression (24) gives us three 
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equations which can be used to reduce the total number of 6 unknown triple 

Regge couplings to 3. 

IV. ESTIlUATION OF THE TRIPLE REGGE COUPLINGS 

In this section we shall discuss some applications of the Eqs. (24). We 

shall examine cases of normal and abnormal duality for diffractive and non- 

diffractive terms and estimate triple Regge couplings for these cases. 

Let us start from the two last equations (24) for nondiffractive terms. 

In the case of normal two-component duality we can split these equations and 

obtain the following expressions for nondiffractive triple couplings : 

GpRRW = 
1 - (cY$ t ab)t 

1 - (czi,+ak)t <EPR’ 

“0 

(29a) 

GPRP 

1.5 - (dp + dR’t 

ct) = 1.5 -(aIp+ak)t <DPR’ 

yO 

GRRRW = 
1.5 - 2@kt 

1.5 -2akt <ERR’ 

vO 

GRRp(“) = 
2(1 - dRt) 

2 - 2crkt <DRR> 

“0 

(29b) 

(29~) 

At small ItI G pRR(t) is very small and negligible. The other triple couplings 

are shown in Fig. 6. In the case of abnormal duality the expressions for 

Gijk will be the same, but with Eij and Dij interchanged. In this case GpRp(t) 
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is negligible and the others are shown in Fig. 6 by dashed lines. We want to 

stress that in both cases the cross terms are very large. 18 

Let us consider now diffractive terms. In the previous calculations l9 

based on the simple version of this approach, all nondiffractive terms were 

neglected. Guided by an approximate M -2 
x 

dependence of the experimental 

pd - Xd cross section, it was also suggested that the G 
PPR 

is small and 

negligible. Then the steep t-dependence of the DHD contribution combinesin(24) 

with vanishing at t + 0 <Epp (t)> and leads to a moderate t-dependence for 

GPPP 
2,zt i9 

(t) -4,3e . In the present case when secondary contributions are 

taken into account the relative value of the DHD term decreases and as a 

result G ppp(t) becomes more flat (see curve 1 in Fig. 7). The other cases 

shown in Fig. 7 are the following: 

(2) normal duality: 

1 -2a’t 
G PI@) = I- 2elYPt <DPP’ 

“0 
(30) 

GPPR (t) = 
0.5 - 2dpt 

0.5 - 2qpt <EPP’. 

“0 

duality : 

(3) abnormal duality [interchange of Eij and Dij in (30)]. 

(4) as an example we also show some particular case of mixed 

GPPP 
= ei<E 

PP 
> + e2<D 

PP’ 

GPPR 
= (1 -el)<Epp>+(i - e2)<Dpp’> 

with E 1 = 0.5 and e2 = 1. 
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Now we are ready for comparison with data. We shall restrict this 

comparison by special case oft -f 0 
6 

where the relations are especially 

simple. Even this restricted consideration will show us that extreme duality 

does not lead to agreement with data in the wide range of M x2/s from 0.01 to 

0.1. For comparison we shall use the extrapolation 
22 

to t = 0 of the data on 

pd - Xd9b and pp - Xp. 
15 

This extrapolation introduces some uncertainty 

due to the experimental variation of the slope but we do not expect the effect 

to be large. The other problem is connected with difference in targets and 

includes : 

(a) Deuteron structure. We shall use the reduction of the deuteron data 

to the nucleon cross section by dividing out the deuteron form factor as was 

done in Ref. 9b. 

(b) Different quantum numbers and consequently different exchanges. 

Since p and A2 contributions are small, the main difference comes from TI- 

exchange. In fact, TT does not contribute at t = 0, but the cross section at 

t + 0 used in the extrapolation (Ref. 22) has the T contribution. The 

estimation of this effect is shown in Fig. 8. Crossed points are the result of 

the extrapolation from t = -0.2 GeV‘ of the nucleon cross section from which 

IT~P and nrrR terms 
25 

were subtracted. 

Curve 1 in Fig. 8 shows the contribution of the nondiffractive terms in 

the normal case. One can see that this contribution is very large. Since the 

rest (diffractive) contributions are non negative, we can conclude that this 

case is positively ruled out. At the same time nondiffractive contributions 

in the abnormal case are relatively small and vary between 0.6 mb . GeV 
-2 
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at M 2/s = 0.01 and 1.1 mb . GeV 
-2 

for Mx2/S = 0.1. Diffractive contributions x 

in a normal case in combination with abnormal nondiffractive terms are 

shown by curve 2 which is close to the experimental points but too flat. At 

the same time the abnormal diffractive term is in apparent disagreement with 

data (curve 3). 

We can give up the normal duality for the cross nondiffractive terms, 

connected with R + N -f P + N scattering, maintaining it for R + N + R + N. 

The nondiffractive contributions in this case are shown by curve 1 in Fig. 9, 

and the whole cross section for abnormal and normal diffractive terms --by 

curves 2 and 3 correspondingly. Both these curves are in disagreement with 

data, although curve 3 is closer. 

Figure 10 shows the comparison with data for the case of normal cross 

terms ij = RP and abnormal ij = RR. Abnormal diffractive terms lead to 

curve 2 which is close to data while normal disagrees (curve 3). 

All the cases are summarized in Table I, where ‘norm” and ‘Ab” 

mean normal and abnormal two- component duality. A plus in the last 

column indicates closeness of the predicted results to the data, while a minus 

shows apparent disagreement. 

Table I. 

RR PR PP --- 
Norm Norm Norm - 

Fig. 8 Norm Norm Ab - 
Ab Ab Norm + 
Ab Ab Ab - 

Fig: 9 NO?+-I72 Al3 Norm + 
Norm Ab Ab 

Fig. 10 ,iL Norm Norm - 
Norm Ab + 
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Even for those cases where curves are close to the experimental points they 

2 
still do not give good description for the whole M, /s-interval considered. 

Thus we can conclude that extreme two-component duality for diffractive and 

nondiffractive terms is in contradiction with our model and experimental data 

on nucleon dissociation and mixed duality is needed at least for one or two 

Reggeon-particle amplitudes: Ph - Ph, Ph - RH, Rh + Rh. The proper 

ratio of different contributions in this case can be obtained by using Eq. (24) 

together with fit of the data which will be done elsewhere. [Note that in con- 

trast to the usual way of using FMSR in a fit program 
23 

Eq. (24) gives more 

detailed constraints on triple Regge terms. J 

The other important conclusion is that irrespectively of diffractive 

terms normal duality is ruled out for the whole nondiffractive contribution 

although it is possible separately for RP or RR terms. 

The vanishing of the triple Pomeron coupling Gppp at t - 0 is possible 

in our approach only in the case of extreme abnormal duality for Pp - Pp 

amplitude which seems to be unfavorable from our analysis. 

ACKNOWLEDGMENTS 

I am very grateful to M. Einhorn, G. Fox, G. L. Kane, S. Mukhin, 

and C. Quigg for useful discussion. 



-is.- 

REFERENCES 

Joint Institute for Nuclear Research, Dubna, and P. N. Lebedev Physical 

Institute, Moscow, USSR 

+op erated by Universities Research Association Inc. Under Contract with 

the United States Atomic Energy Commission. 

1 
For review of the recent data see S. V. Mukhin and V. A. Tsarev. Invited 

paper presented at the 1974 Meeting of the Division of Particles and Fields 

of the APS, Williamsburg, Virginia. 

2 
CERN-Hamburg-Orsay-Vienna Collaboration, E. Nagy et al., Paper 

submitted to the XVII International Conference on High Energy Physics, 

London, 1974. 

3V. A. Tsarev, Fermilab-Pub-74/80-THY/EXP (1974). 

4 S. D. Drell and K. Hiida, Phys. Rev. Letters 1, 199 (1961); R. Deck, 

Phys. Rev. Letters c, 1969 (1964). 

5 J. Kwiecinski, Nuovo Cimento 2, 619 (1972); A. I. Sanda, Phys. Rev. D6, - 

280 (1972); M. B. Einhorn, J. E. Ellis and J. Finkelstein, Phys. Rev. E, 

2063 (1972). 

6Physical region for the Mx production is restricted by 1 t I> 1 tmin 1 where 

ltmin / = (M;-M;/~P)~. At large energies tmin is small and we shall 

neglect it. 

7 
H. Harari, Phys. Rev. Letters 20, 1395 (i968); P. G. 0. Freund, Phys. - 

Rev. Letters 20 235 (1968). -’ 
8 

For review see M. B. Einhorn, Proc. of the XVI International Conference 

on High Energy Physics, Batavia 1972, Vol. I, p. 417. 



-i9- 

9 P. Hoyer, Invited talk presented at the XVII International Conference on 

High Energy Physics, London, 1974. 

10 M. B. Einhorn, M. B. Green, and M. A. Virasoro, Phys. Letters 37B, - 

292 (1971). 

11 
S. H. Tye and G. Veneziano, Phys. Letters 38B, 30 (1972). - 

12 
“,“N 

-2 
is an energy-independent part of the TN-slope. The value 9 GeV 

chosen in Ref. 3 for the total slope at s -400 GeV 2 
is equivalent to 

-2 13 
b 

TN 
= bTI; + Z@p’mswith$=0.25GeV . 

13 
B. Bartenev et al., Phys. Rev. Letters g, 1088 (1973). 

14(a) E. W. Anderson et al., Phys. Rev. Letters 5, 854 (1966); 

R. M. Edelstein et al., Phys. Rev. E, 1073 (1972). 

(b) Y. Akimov et al., Fermilab-Conf;74/56-EXP (1974). 

(c) B. Bartenev et al., Phys. Letters E, 299 (1974). 

(d) Y. Akimov et al. , Fermilab-Conf-74/79-EXP (1974). 

15 
R. Shankar preprint LBL-2678 (1974). 

16 L. A. P. Balazs, Fermilab-Pub-74/78-THY (1974). 

17 M. Bishari, Phys. Letters 38B, 510 (1972) and LBL-2066 (1973). - 
18 The fact that the Deck-type model predicts large cross triple Regge terms was 

also pointed out for the case of n-dissociation by G. Fox, Proc. of Inter- 

national Conference on High Energy Collisions, Stony Brook, 1973. 

19 Y. Akimov et al., Fermilab-Conf-74/79-THY/EXP (1974). 

20 We take here into account the different definition of the Gppp in Ref. 19: 

GPPP = GPPP 
(Ref. 39) exp[-2$ (1 + .!nz/‘/vo)] t. 2 2 2MdE = 1000 GeV2. 

21 CERN-Holland-Lancaster-Manchester Collaboration, Albrow et al., data 

presented in Ref. 22. 



-2o- 

22 F. K. Loebinger, Review talk presented at the XVII International Con- 

ference on High Energy Physics, London, 1974. 

23 
D. P. Roy and R. G. Roberts, Rutherford Laboratory preprint RL-74-022 

T79 (1974); R. D. Field and G. C. Fox, CALT-68-434 (1974). 



-21- 

FIGURE CAPTIONS 

The mass spectrum for the nrr+ 
2 

Fig. 1. system. The resonance peaks 

are clearly seen in the backward Jackson hemisphere. The area 

under these peaks is much smaller than the sum of areas of non- 

resonant bumps in the forward and backward Jackson hemispheres. 

Fig. 2. The pion-triangle model for triple Regge coupling. 

Fig. 3. Graphical representation of the sum rules. 

Fig. 4. Drell-Hiida-Deck-type diagrams for pp - nNp. 

Fig. 5. Energy dependence of the 1.4 GeV bump in the proton dissociation. 

Fig. 6. Nondiffractive triple Regge couplings. 

Fig. 7. Diffractive triple Regge couplings. 

Fig. 8. Comparison with experiment. i- normal nondiffractive contributions. 

2- abnormal nondiffractive + normal diffractive. 3- abnormal 

nondiffractive + abnormal diffractive. 

Fig. 9. Comparison with experiment. 1- nondiffractive contributions, 

RR-normal, PR-abnormal. 2 - (1) + abnormal diffractive. 

3 - (i) + normal diffractive. 

Fig. 10. Comparison with experiment. 1- nondiffractive contributions 

PR-normal, RR-abnormal. 2- (1) + abnormal diffractive. 

3- (1) + normal diffractive. 
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